Diesel Particulate Matter Control Strategies

Debbie Tomko
Chief, Environmental Assessment & Contaminate Control Branch
Mine Safety & Health Administration
Pittsburgh Safety & Health Technology Center
Technical Support / Dust Division / Field Group
Overview

Control Strategies

DPM reduction depends on:

- Ventilation
- Environmental Cabs
- Administrative Controls
- Diesel Engines
- Engine Maintenance
- Biodiesel Fuel
- Aftertreatments
Control Strategies

Almost all mines will require a combination of the controls to attain compliance.
Control Strategies

Exposure Controls
- Ventilation
- Environmental Cabs
- Administrative Controls

Emission Reduction
- Diesel Engines
- Engine Maintenance
- Biodiesel Fuel
- Aftertreatments
Effectiveness of DPM Controls

Ventilation
- DPM reduction depends on nature of upgrade
- Improvement roughly proportional to airflow increase

Environmental cabs up to 80% reduction
- 800 μg/m3 reduced to 160 μg/m3 in cab
- Some workers cannot work inside a cab

Administrative or work practice controls
- DPM reduction depends
 - Mine conditions
 - Practices used
Ventilation

- Widely used method for DPM control
- DPM reduction proportional to airflow
 - Doubling airflow ≈ 50% DPM reduction
- Increasing ventilation can be difficult and costly
 - Major upgrades
 - Example:
 16-foot diameter shaft = $1,000/foot
 - Power
 - Example:
 250,000 cfm at 1-inch wg = 40 hp
 40 hp x 100 hours/week @ 10¢/kw-hour = $15,000/year
 1.25x airflow = 2x hp = 2x electricity cost
 2x airflow = 8x hp = 8x electricity cost
How Much Air is Enough?

Particulate Index (PI) = airflow quantity needed to dilute DPM emissions to $1,000_{\text{DPM}} \, \mu g/m^3$

- $\text{PI} \rightarrow 1,000_{\text{DPM}} \, \mu g/m^3 = 800_{\text{TC}} \, \mu g/m^3$
- $2 \times \text{PI} \rightarrow 500_{\text{DPM}} \, \mu g/m^3 = 400_{\text{TC}} \, \mu g/m^3$
- $5 \times \text{PI} \rightarrow 200_{\text{DPM}} \, \mu g/m^3 = 160_{\text{TC}} \, \mu g/m^3$

PI’s for MSHA Approved engines listed on MSHA’s Internet website

How Much Air is Enough?

- Examples of engine PI’s
 - Cat 3306 PCNA (150 hp)
 - PI = 27,000 cfm
 - 5 x PI = 135,000 cfm
 - Deutz BF4M2012 (150 hp)
 - PI = 3,000 cfm
 - 5 x PI = 15,000 cfm

Remember: \(2 \times cfm = 8 \times hp = 8 \times \$\)

- Boosting airflow is a good start, but also need to direct air where needed (walls, stoppings, doors)
 - Eliminate short circuits and recirculation paths
 - Ensure air reaches all working areas and faces
Ventilation System Layouts

- Avoid
 - Adjacent intake and exhaust openings
 - Small diameter shafts/slopes < 10-foot diameter
 - Very high resistance (high power costs)

- Distributing air underground
 - Long unmined blocks
 - Brattice lines
 - Auxiliary fan and duct (rigid and flexible) for developments ends
 - Inlet needs to be in fresh air
 - Maintain duct
Adjacent Intake and Exhaust
Separated Intake and Exhaust
Recirculation

Free-standing booster fans with no ventilation control structures (stopplings, air walls, doors, etc.) cause recirculation.

recirculation path
Dead Ends – Free-Standing Fans

Main Airflow

Free Standing Fan

Critical parameters:
- Fan placement
- Angle off the rib
Dead Ends – Auxiliary Fan

Critical parameters:
- Fan placement
- Fan horsepower
- Duct length & diameter
- Duct bends & corners
- Duct leakage
Natural Ventilation

- Temperature difference causes pressure difference.
- Example:

 NVP = 0.03-inch wg per 100 feet per 10°F

 100-foot shaft and 40°F change (15°F to 95°F)

 NVP = 0.03 x 100/100 x 40/10 = 0.12-inch wg

 - 0.12-inch wg → 20,000 to 50,000 cfm is typical
 - 0.12-inch wg is maximum value & usually less
 - Not sufficient for DPM dilution

- Reverses from summer to winter

- Very low in spring and fall (sometimes zero)
Environmental Cabs

- Environmental cabs can reduce:
 - TC exposure
 - Noise exposure
 - Silica and other dust exposure

- Cabs should be:
 - Tightly-sealed with no openings
 - Repaired when windows are broken
 - Pressurized with filtered breathing air
 (follow regular filter change-out schedule of 250 hours)
 - Designed for 1 air change per minute
 (100 ft3 cab requires 100 cfm fan)
 - Operated with doors & windows closed
 (may need air conditioning)
 - Maintained in good condition
Testing Cab for Positive Pressurization

- Close doors and windows
- Turn on AC fan or blower to high setting with “outside air”
- Attach Magnehelic gage to flexible tubing
- Place flexible tubing into cab and close door (make sure tube is not “pinched off”)
- Magnehelic gage should register +0.10-inch wg or more
Administrative Controls

- Control DPM exposures through operating procedures, work practices, etc.
- Job rotation prohibited as DPM administrative control
 [§57.5060(e)]
 - Job rotation
 - Means assigning a job to more than one worker so that each worker does the assigned job for only part of a shift
 - Spreads exposure to more workers
 - Not acceptable for control of exposure to carcinogens in accordance with good industrial hygiene practice
Work Practices

- Work practices can reduce DPM emissions, concentrations, and exposures

- Examples:
 - Minimize engine idling and lugging
 - Keep fuel and lube oil clean
 - Utilize traffic control and production scheduling
 - Keep heavy traffic downstream from miners who work outside of cabs (e.g. powder crew)
 - Route haul trucks in return air, especially when ascending ramps loaded
 - Limit horsepower based on available cfm’s
 - Schedule blasters on non-load/haul shifts
 - Keep cab doors and windows closed
Conclusions

Most mines should work to attain compliance with a combination of control strategies:

- 3 exposure controls
- 4 emission reduction
Contact Information

Feel free to contact me with any questions.

- e-mail: tomko.deborah@dol.gov
- phone: (412) 386-6009