August Supervisory Sweeps

Presenter: Laura McMullen
Introduction

Today we are going to discuss

- Human Factors
- Maslow’s “Heirarchy of Needs”
- Human Barriers that Affect Performance
- The Four Types of Controls to Prevent Accidents
- “SLAM” and “SMART”
- History and Results of Human Factors Safety and Health Programs
- MSHA’s Goal and Action Plan

- These are tools that will help the mining industry attain a new level of risk assessment and long term risk management

Make the RIGHT Decision!
PURPOSE OF THE PROGRAM

Provide management and miners with the same tools that each can use on a daily basis to

• Recognize Risk
• Manage Risk

Make the RIGHT Decision!
MSHA’s GOAL

Educate miners on motivators that influence their decisions regarding safety and health

Help them to

Make the RIGHT Decision

Mine Safety and Health Administration
Menu

- Risk and Hazards
- Human Factors
- Human Barriers that Affect Performance
- Maslow’s Heirarchy of Needs
- The Four Types of Controls
- SLAM for Small Mines “5 miners or Less”
- SMART
- Human Factors Safety and Health History and Results

ACTION PLAN

EXIT
WHAT IS RISK?

- Risk is the combination of the likelihood that an accident or injury will occur and its potential severity.

- A hazard is anything that has the potential to cause harm.

- Harm is the negative affect on one’s safety or health.
There is risk in everything we do

- Regardless of the job in the mining industry, a potential for danger always exists.
- Mining has few constant factors and many variables.
- Environment, conditions, and human factors all impact this risk.
- Risks must be eliminated or mitigated by identifying, evaluating, and controlling the hazards as each task is performed.
- Performing this process on a recurring basis creates system safety and health.
WHERE DO WE BEGIN TO LOOK FOR THE HAZARDS?

In the “SYSTEM”

- The system is the composite of people, machines, and materials that are used to perform a specific task in a specified environment
- All components are interrelated so a failure of any part can cause a failure of the system
- Our risk assessment must take into account all the components and any associated hazards and human factors
Methods not followed lead to accidents

We want to **focus on the motivators**

Focusing on motivators will help us influence the decisions that miners make about their safety and health.
Mining Factors that Motivate Risky Actions

- **Production**
 Excessive emphasis or focus on production (e.g. condoning or encouraging unsafe acts during repairs or maintenance, excessive emphasis placed on production bonuses, etc.)

- **Inconvenience**
 It’s often very inconvenient to follow safety & health regulations

- **Pride, Ego, or Fear of Appearing Incompetent**
 These attitudes prevent some miners from asking for help

- **Working Alone**
 Many times this increases the opportunity for at-risk actions
What are Human Factors?

Human attributes, susceptible to or representative of the sympathies and frailties of human nature, inconsistency of action or thought, the manner in which a person conducts oneself, can be influenced or motivated.
Human factors is an act or action by an individual that can be observed by others.

Human factors is what a person does or says…
…not what they think, feel, or believe.

Feelings, attitudes, or motives are not human factors. They are internal aspects of a person that cannot be directly observed by others.
Describing Human Factors

Human factors descriptions should be:

Clear - to avoid being misinterpreted
Precise - to fit the specific human factors observed
Brief - to keep it simple

Chosen for their reference to the activity

The test of a good human factors definition is

whether the persons using the definition can accurately observe

if the target human factor is occurring
Describing Human Factors

EXERCISE

Determine which of the following human factors descriptions fit these criteria:

(1) “Is not paying attention”
(2) “acting careless”
(3) “keeping hand on handrail”
(4) “lifting safely”
(5) “moving knife away from body while cutting”
(6) “using knees while lifting”
Describing Human Factors

- At-risk human factors often allow for more immediate fun, comfort, and convenience than safe human factors.

- Most safe and healthy work human factors do not provide obvious and measurable feedback to the worker. Instead, most safety and health practices have intrinsic negative consequences such as discomfort, inconvenience, and reduced pace.
The Two Types of Barriers

• **PHYSICAL BARRIERS**
 - Accidents that could have been prevented by some type of physical barrier. A control is a physical barrier that has been installed or implemented.

• **HUMAN BARRIERS**
 - Accidents that could have been prevented by the individuals involved. Human factors-based systems and programs create an optimum safe work atmosphere where workers choose to value safety.
The Five Major Barriers to Human Performance

1. INFORMATION
2. PROPER TOOLS
3. INCENTIVE
4. KNOWLEDGE
5. CAPACITY
INFORMATION

• EXPECTATIONS NOT CLEAR
• GUIDANCE TO PERFORMING THE TASK IS ABSENT OR VAGUE
• NO FEEDBACK ON HOW WELL A PERSON IS PERFORMING
• LACK OF CLEAR OPERATING PROCEDURES
PROPER TOOLS OR EQUIPMENT

APPROPRIATE TOOLS OR EQUIPMENT:
- ARE NOT AVAILABLE
- IMPROPERLY DESIGNED
- RETRO-FITTED WITH FLAWS
INCENTIVE

- UNSAFE PERFORMANCE REWARDED
- SAFE PERFORMANCE PUNISHED
- POSITIVE REINFORCEMENT FOR FOLLOWING SAFE PROCEDURES IS OVERSHADOWED BY NEGATIVE PEER PRESSURE
- COMPANY MONETARY INCENTIVE PROGRAMS THAT REWARD "ZERO" INJURIES CAN PROMOTE MINERS TO NOT REPORT ACCIDENTS
KNOWLEDGE

• PERSON DOES NOT KNOW HOW TO DO THE JOB SAFELY

• LACK OF EDUCATION, TRAINING AND EXPERIENCE ARE FLAGS FOR THIS PROBLEM

• EXPERIENCE AND TRAINING IN ONE AREA DOES NOT QUALIFY ACROSS THE BOARD
CAPACITY

- INTERNAL TO THE PERSON
- CAN BE BOTH MENTAL AND PHYSICAL
- TASK EXCEEDS CAPACITY OF THE INDIVIDUAL
- SOMETHING IMPAIRS THE INDIVIDUAL’S CAPACITY

EXAMPLES WOULD BE:
- Equipment operator with a short attention span
- Miner that has no peripheral vision
- Impaired by alcohol or drugs
- Mind is on other issues
The Four Types of Controls

- Engineering
- Personal Protective Equipment (PPE)
- Administrative
- People
Engineering Controls

Engineering Controls encompass:

- A sound system design before use
- A redesign after a problem is discovered
Examples of Engineering Controls

• Automating parts of the process
• Redesigning machine controls
• Reducing speed
• Using safer materials
• Ventilation (dilution or local)
• Enclosing, Isolating, or Absorbing
• Increasing or shortening distances
Administrative Controls

Administrative Controls encompass:

• Management’s structuring of work activities and duties

• Management’s implementation of instructional tools and reminders
Examples of Administrative Controls

- Rotating workers between jobs
- Rotating work schedules
- Establishing work procedures
- Putting up warning signs
- Eliminating certain jobs or tasks
- Improving education and training
Personal Protective Equipment Controls (PPE)

PPE Controls encompass:

• Miners wearing an apparatus, device, or article of clothing that shields them from unwanted objects or energy
Examples of PPE Controls

- Respirators
- Hearing protection
- Gloves
- Boots
- Safety glasses
- Hard hats

Note: PPE controls should only be used while other controls are being developed, installed, or implemented; when additional protection is needed; or when hazards cannot be controlled any other way.
Determine the Optimum Place or Places for Controls to be Implemented

Source
The location where the unwanted energy or object(s) are released.

Path
The medium through which the unwanted energy or object(s) travel.

Receiver
The miner in danger of being contacted by the unwanted energy or object(s).

- Engineering controls work in these locations.
- Administrative and PPE controls work on the receiver.

People controls implemented through human factors safety and health programs work on all three.
Questions
Addressing Human Factors

Make the RIGHT Decision!
Maslow’s Hierarchy of Needs

- Physical survival needs
- Need for safety and security
- Social needs - belonging
- Need for self-esteem
- Need for self-actualization

Motivation to Satisfy Need

- Challenging Projects. Opportunities for Innovation and Creativity. Learning at a High Level.
- Important Projects, Recognition of Strength-Intelligence, Prestige and Status.
- Acceptance, Group Membership. Association with Successful Team. Love and Affection.
- Water, Food, Sleep, Warmth, Health, Exercise, Sex.

Make the RIGHT Decision!
Psychological Needs
“Survival, Safety, Belonging and Self-Esteem”

Make the RIGHT Decision!
Psychological Needs

“Self-Esteem”

Thinking that someone is important or valuing that person

It helps people hold their heads high and feel proud about what they can do

It gives them courage to try new things and power to believe in themselves

It lets them respect themselves, even when they make mistakes

When they respect themselves, others will too
Aesthetic Needs

Haul Truck Training Simulator

Make the RIGHT Decision!
Miners have certain rights and responsibilities where safety and health are concerned.

Self-Actualization

Independence!
Comfort with Oneself

Make the RIGHT Decision!
Self-Actualization Needs
Challenging Projects, Innovative Ideas, Creativity, and High Level Learning
To change human factors, management and miners must form a team that meets regularly to create an atmosphere where miners actively care for safety.

Maslow’s triangle depicts what this atmosphere must consist of to cause miners and management to decide to work safely and healthily.

People value things in life such as family, friendships, and hobbies because of the elements in this triangle.

When management & miners have these elements built into how they perform safety and health in the mine, they will choose to work safely and healthily because they value it.

<table>
<thead>
<tr>
<th>Optimism</th>
<th>the extent to which a person expects the best will happen for him/her</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Esteem</td>
<td>feelings of self-worth and value</td>
</tr>
<tr>
<td>Belonging</td>
<td>the perception of group cohesiveness or feelings of togetherness</td>
</tr>
<tr>
<td>Personal Control</td>
<td>the extent a person believes he or she is personally responsible for his/her life situation</td>
</tr>
<tr>
<td>Self Efficacy</td>
<td>general level of belief in one’s competence</td>
</tr>
</tbody>
</table>
Questions Anyone?
Personal risk assessment & management is a step-by-step process used to eliminate or mitigate risks before performing a specific task. The miner also uses it while the task is being performed and after the task is completed.
Risk Management for Miners (SLAM)

- **Stop** – think through the task
- **Look** – identify the hazards for each job step
- **Analyze** – determine if you have the proper knowledge, training and tools to do the task
- **Manage** – remove or control hazards and use the proper equipment
STOP

- Not so fast!
- Freeze the situation for a moment and look at each step in the task
- Is this a new task?
- Has the task changed?
- When was the last time you did this task?
- Do you feel comfortable doing this task?
- If you do not, you need training
LOOK

• Always inspect the work area for potential hazards
• This step begins prior to starting any task, during the task, and after the task is completed
• Identify the hazards for each job step
• Evaluate what must be done in respect to the potential hazards
ANALYZE

• Determine if you have the
 - ✔ Knowledge
 - ✔ Skills
 - ✔ Training
 - ✔ Tools to do the task safely
• Think about what else you need in order to perform the task safely
• If you need help, ask for it
• If you need training, do not perform the task until you have been trained
MANAGE

• Take the appropriate action to eliminate or minimize any hazards that make the risk unacceptable
• Ensure that the proper equipment is used and that it has been well maintained
• Take account of the task just completed
• Did anything unanticipated happen?
• Address unplanned occurrences and plan for them in the future
• Share this information with other miners and mine management
Implementing SLAM

- Regularly train and retrain miners on how to SLAM risks
- Regularly solicit new SLAM risk testimonies from the miners.
- Allow all miners to hear and discuss these testimonies.
SMART
KEY PRINCIPLE

A dynamic risk reduction program is a roadmap and a vehicle that produces continual improvements in safety and health. This program is run by a team comprised of management and miners. The team constantly revises the program to solve problems created by specific risks.
Risk Management for Mine Operators (SMART)

- **STOP** - Isolate each step in a task and identify past and potential accidents, injuries, and violations

- **MEASURE** - Evaluate the risks associated with the task and barriers that have allowed hazards to cause injuries

- **ACT** - Implement controls to minimize or eliminate any hazards that make the risk unacceptable

Make the RIGHT Decision!
Risk Management for Mine Operators

(SMART)

• **REVI EW** - Conduct frequent work site visits to observe work practices and audit accidents, injuries, and violations to identify root causes

• **TRAIN** - Develop a human factor-based action plan and then involve and train the miners

Make the RIGHT Decision!
STOP

• Develop one or more health and safety teams comprised of management and miners
• Teams must meet regularly to discuss accidents, violations, observations, audits, and testimonies of miners who have SLAMmed Risks
• Identify specific risky acts and tasks that need to be targeted
• *Share with all miners and incorporate their suggestions*
<table>
<thead>
<tr>
<th>ACCIDENT or VIOLATION</th>
<th>PROBLEM AREA</th>
<th>CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tools/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incentive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
</tr>
</tbody>
</table>

Sample Audit Form
MEASURE

• Perform root cause analysis to find out why unsafe acts are happening
• List the barriers that permit these unsafe acts (physical, human)
• *Share with all miners and incorporate their suggestions*
Root Cause Analysis Form

(Write work activity here)

<table>
<thead>
<tr>
<th>Date: //___</th>
<th>Shift: _____</th>
<th>Time: ________ am pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observer:______________________</td>
<td>Miner Observed: __________________________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Factor No.</th>
<th>AT-RISK human factors</th>
<th>PROBLEM AREA</th>
<th>CAUSE OF AT-RISK human factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td>Installation</td>
<td>Correction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tools/Materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incentive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capacity</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACT

- Decide on one or more engineering, administrative, personal protective equipment (PPE), and people controls
- Install, require, and/or enact these controls
- *Share with all miners and incorporate their suggestions*

Make the RIGHT Decision!
REVIEW

- Perform announced and unannounced observations where miners observe the work practices of other miners
- Miners must record their observations and discuss with the miners they have observed
- Perform audits on observations, violations, accidents, and SLAM testimony
- Share audit findings with miners and incorporate their suggestions
- Develop Critical human factors Checklists (CBC) for specific tasks and occupations
- List the safe human factors that must be performed to do the task safely
- List these human factors in order if applicable
Sample Audit Form

<table>
<thead>
<tr>
<th>ACCIDENT or VIOLATION</th>
<th>PROBLEM AREA</th>
<th>CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td>Information</td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>Correction</td>
<td>Tools/Incentive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capacity</td>
</tr>
</tbody>
</table>

Totals
TRAI N

• Develop ingenious proactive and reactive human factors-based programs that will create a safe and healthy work culture at the mine
• Share with all miners and incorporate their suggestions
• Take safety and health to the next level by enacting these programs

Make the RIGHT Decision!
Implementing SMART

Once the team knows the specific human factors they wish to target, they are ready to develop ingenious proactive and reactive human factors-based programs.

Once again, at-risk human factors often allows for more immediate fun, comfort, and convenience than safe human factors.

Because of this, there is a need for special intervention to direct and motivate safe human factors.
There are Two Types of Interventions:

ACTIVATORS

&

CONSEQUENCES

Activators *precede and direct* human factors and are proactive.

Consequences *follow and motivate* human factors and are reactive.
ACTIVATORS

The ingenious use and management of signs, cards, commitments, pledges, etc. to stimulate and encourage workers to work safe. Activators proceed and direct human factors.

CONSEQUENCES

The ingenious use and management of incentives, rewards, disincentives, and punishments to motivate workers to work safe. Consequences follow and motivate human factors.
ACTIVATORS

The six keys to powerful activators:

• Specify human factors
• Maintain significance with novelty
• Vary the message
• Involve the target audience
• Activate close to response opportunity
• Implicate consequences
(1) SPECIFY Human Factors

Signs that refer to a specific human factors are beneficial.

Signs with general messages have very little impact.

EXERCISE – Promotional flyers were passed out at a grocery store. Three different messages were placed on the flyers to get the patrons to not litter by throwing the flyers onto the ground. Pick the message that you think worked best.

“Please don’t litter. Please dispose of properly.”

“Please deposit in green trash can in rear of store.”

Equally ineffective – one as ineffective as the other

Drastically more effective – Up to 30% in trash cans
Too many activators can be overwhelming and ineffective
Some activators are not specific enough.
ATTENTION:
EMPLOYEE SAFETY CODE A-17 IS IN EFFECT BEYOND THIS POINT:
SAFETY RESTRICTIONS FORBID ENTRY BY EMPLOYEES WHO HAVE NOT OBTAINED CLEARANCE FROM THEIR SUPERVISOR AT ENTRANCE LEVEL 1.

WHO HAS TIME TO READ THAT?

Some signs are too complex to be effective.
(2) MAINTAIN SIGNIFICANCE WITH NOVELTY

Maintain the significance of activators by doing different and new things from time to time.

Failing to update activators for long periods of time causes workers to become bored with, and irresponsive to activators. This is called habituation.
EXERCISE - Can anyone tell me what the seat-belt reminder in your personal car sounds like?

Does this sound cause you to buckle-up?

EXERCISE - The effectiveness of different seat-belt reminders were tested. Pick the message that you think worked best.

A standard six-second buzzer or chime triggered by engine ignitions

A six-second buzzer or chime that initiated five seconds after ignition.

A voice reminder, “Please fasten your safety belt”, that initiated five seconds after engine ignition and was followed by a “Thank you” if the driver buckled up.
EXERCISE - The effectiveness of different seat-belt reminders were tested. Pick the message that you think worked best.

- A standard six-second buzzer or chime triggered by engine ignitions.
- A six-second buzzer or chime that initiated five seconds after ignition.
- A voice reminder, “Please fasten your safety belt”, that initiated five seconds after engine ignition and was followed by a “Thank you” if the driver buckled up.

Least effective

Most effective

More effective
Habituation can cause irresponsible human factors to activators
(3) VARY THE MESSAGE

Self explanatory – Safety and health teams can get new ideas by having regular meetings. All miners with a certain job title should meet regularly. New ideas for messages can be obtained by asking miners to share something they did for safety since the last meeting. Miners should also discuss their near misses. Great ideas will come because these testimonies will be personal, genuine, and distinct.

Maslow Principle!
Changeable signs (vary the message) - notice how the author is given credit for the sign!
(4) INVOLVE THE TARGET AUDIENCE

Self explanatory - When people contribute to a safety and health effort, their ownership of and commitment to safety increase. Also, when individuals feel a greater sense of ownership and commitment, their involvement in safety achievement is more likely to continue. People feel like they belong and that they have control.

Maslow Principle!
Some activators imply ownership and increase actively caring.
(5) ACTIVATE CLOSE TO RESPONSE OPPORTUNITY

Activators should be physically positioned close to the location where the human factors will be performed.

EXAMPLE - post the safe work procedure lists near the locations where electricians will have to perform the work activity on the list.

EXERCISE - A study was performed on the effectiveness of TV commercials in getting drivers to buckle-up. For the control group (the group receiving no messages), the 10-month mean was 8.2% for males and 10.3% for females. Pick the mean you think was for the group getting the TV messages.

8.4% males 11.3% females
15.2% males 20.6% females
30.1% males 47.7% females
(5) ACTIVATE CLOSE TO RESPONSE OPPORTUNITY

Activators should be physically positioned close to the location where the human factors will be performed.

EXAMPLE - post the safe work procedure lists near the locations where electricians will have to perform the work activity on the list.

EXERCISE - A study was performed on the effectiveness of TV commercials in getting drivers to buckle-up. For the control group (the group receiving no messages), the 10-month mean was 8.2% for males and 10.3% for females. Pick the mean you think was for the group getting the TV messages.

8.4% males 11.3% females
15.2% males 20.6% females
30.1% males 47.7% females

TV message mean - very ineffective because it was too far removed from the desired human factors
Activators should have obvious or implied consequences or they may be ineffective. These consequences can be positive and negative. Positive consequences are called incentives and negative consequences are called disincentives. Incentives usually are in the form of some reward, whereas disincentives usually are some form of penalty.

The subject of direct consequences as interventions will be discussed later. But for now, the amount of power an activator has to motivate human factors depends on the consequence it signals.
The most powerful activators imply immediate consequences.
SAFETY IS A VALUE AND THAT VALUE IS LIFE.

Bobby Stanley June 2004
SAFETY IS ALWAYS IN THE HANDS OF PEOPLE ON THE JOB
CONSEQUENCES

The ingenious use and management of incentives, rewards, disincentives, and punishments to motivate workers to work safe. Consequences follow and motivate human factors.

Most safe work human factors do not provide obvious and measurable feedback to the worker.

In fact, most safety practices have intrinsic negative consequences such as:

(1) Discomfort,
(2) Inconvenience, and
(3) Reduced pace.

These intrinsic negative consequences discourage safe work human factors.
Because of intrinsic negative consequences, there is often a need for intentionally added supportive consequences.

Once again, extra positive consequences are necessary when the natural consequences are insufficient to motivate safe human factors and/or discourage safe human factors.
Intermittent praise, recognition, novelties, and credits redeemable for prizes are powerful consequences that motivate safe human factors. These methods are keys to maintaining continuous safe and healthy human factors for long periods of time.

It’s important that workers perceive doing a task correctly as valuable and rewarding. For this reason, praise and recognition should be intermittent.
If the teacher displays genuine approval and delight in the student’s achievement, an extra reward or consequence might not be needed to encourage good performance.
It’s important that incentives and rewards are not given in a way in which people feel controlled. People must believe that they truly earned the consequence through their own efforts.

Maslow Principle!
Punishment is only warranted when the undesirable human factors is intentional and not encouraged by the work culture.
A powerful human factors punishment strategy is to have a worker conduct a root cause analysis of his/her actions.

• The person should then develop a personal corrective action plan to correct his/her human factors. If a supervisor agrees with the plan, the worker should sign the plan.

• When a person signs a commitment that took some effort to develop, the probability of compliance is greatly enhanced.

Punishments must be fair and everyone must be treated the same!
REWARDS

Effective incentive/reward programs satisfy the following:

• Human factors required to achieve a safety reward should be specified and perceived as achievable by all participants.

• Rewards should be given soon after safe human factors are observed.

• Workers should select the rewards they would like to receive. *MASLOW PRINCIPLE!*

• Everyone who meets the safe human factors criteria should be rewarded.
REWARDS

• It is better for many participants to receive small rewards than for one person to receive a big reward.

• The rewards should be displayed and represent safety achievement. Coffee mugs, hats, shirts, sweaters, blankets, or jackets with a safety message are preferable to rewards that will be hidden, used, or spent.

• Contests should not reward one group at the expense of another.

• Groups should not be penalized or lose their rewards for failure by an individual.

• Progress toward achieving a safety reward should be systematically monitored and publicly posted for all participants.
Rewards that miners have chosen.

- **Industry Privileges**
 - Time off
 - Extra break
 - Refreshments
 - Preferred parking
 - Special assignment

- **Exchangeable Tokens**
 - Cash
 - Food coupon
 - Ticket to an event
 - Rebate coupon
 - Gift certificate

- **Useful Items**
 - Coffee mug
 - Litter bag, Car wax
 - Tire gauge
 - Umbrella, Pocket knife
 - Flashlight, Pen

- **Chance to Win a Contest**
 - Lottery ticket
 - Bingo number
 - Poker card, Game symbol
 - Raffle coupon

- **Promotional Items**
 - Safety button
 - Bumper sticker
 - Key chain
 - Hardhat sticker
 - T-shirt

- **Social Attention**
 - Name in newspaper
 - Posted picture
 - Letter of commendation
 - T.V. interview
 - Handshake, Thank-you card

A variety of possible rewards are available to motivate safe behaviors in organizational settings.
Raffle drawings that result in few “lucky” winners and many “unlucky” losers can do more harm than good.
Safety contests can motivate unhealthy competition.
Rewards with safety messages are special to those who earn them.
EXAMPLE: The Hoechst Celanese company of about 2,000 employees developed a plant-wide incentive program. When employees were observed performing safe human factors, they received immediate praise and a “credit”. At the beginning of the year, each worker received a “safety credit card” for tallying ongoing credit earnings. Only the late reporting of an injury was penalized by a loss of credits. At the end of the year employees exchanged their credits for a prize of their choice.

EXAMPLE: In 1994, a Toyota Motor manufacturing plant in Kentucky received 35,000 suggestions from its 6,000 employees. More suggestions were expected in 1995. Here’s why. The employees received timely feedback regarding the utility and feasibility of every suggestion. If the suggestion was approved, they were empowered to implement it themselves. Also, the individual or team responsible received 10% of the savings for the first year the suggestion was implemented.
THANK YOU CARDS

Thank-you cards are incentives and rewards that have been used by many companies with great success.

When workers observes a fellow employee working safely, they fill out the card and give it to them.
One company designed a card with a peel off sticker which allowed the recognized employee to place on his/her hard-hat or dinner bucket.

Thank You for Actively Caring For Safety

I Thanks ____________________
for _______________________

From ______________________

front of card

Help this card Makes A Difference
Please deposit this in the collection box
"Hand-N-Hand For Safety We Stand"

back of card

This Actively Caring Thank-You Card offers reward leverage.
Employees can use a thank-you card to recognize each other's safe behavior.
MSHA’s Motivational Tools for Miners

Thank you for "making the RIGHT decision!"

I care about my safety and health!
I am a RISK SLAMMER!
Exxon, Ford, General Motors, and Westinghouse are examples of companies that have used thank-you card programs.

Some companies allowed thank-you cards to be exchangeable for gifts, or displayed them on a bulletin board as a “safety honor roll”.

Some companies put safety messages or logos on the gifts that signified safety achievement.

A few companies set up an additional collection container for thank-you cards. Every card deposited in this container was worth 25 cents to a charity or needy families.
Another company affixed a value of $1.00 to cards deposited in a special box, to purchase toys for disadvantaged children. The children of the employees picked out and delivered the toys.

MYSTERY OBSERVEE PROGRAM - The NORPAC paper mill developed an ingenious program. 35 of 450 workers volunteered to be “mystery-observers”. These volunteers received a coupon for a meal for two at a restaurant. The mill workers were challenged to complete a critical human factors checklist (CBC) on a co-worker every week. If a worker happened to select a mystery-observer to observe, the mystery-observer gave a reward coupon to the observer. The observer then became a mystery-observer and had the chance to reward someone else.
SETTING GOALS

• Effective goals are goals that are activators with implied consequences.

• Human factor goals hold people accountable for the decisions they make.

• Goals need to be measurable, personal, and attainable.

• Establishing goals that employees feel they can not control, causes negative stress or distress, and encourages under-reporting of accidents. The only control workers have over injuries and accidents, is the ones that involve their direct contribution.

• One injury in the workplace, perhaps resulting from another person’s carelessness, ruins the goal of zero injuries. This leads to a perception of failure and no one likes to feel like a failure.

“Zero Injury” goals should be the aim and purpose of a safety vision or mission. It should not be the daily goal for workers.
Goals should focus on the human factor processes that need to be in place to reduce injuries and accidents.

Goals should:

(A) Define what will happen when the goal is reached (the consequences),

(B) Track progress toward reaching the goal, and

(C) Provide rewarding feedback when intermediate steps are completed. This feedback is in itself is a consequence that motivates continued progress.

It is critical that people asked to work toward a goal “buy in” or believe in the goal.
• **Process-focused** and **achievement-oriented goals** work because they are not **outcome-based** and **injury-focused**.

• More importantly, these goals are employee driven.

• Workers are motivated to initiate the safety process because it is their idea.

• They get involved in the process and own it and stay motivated because the goals are a roadmap which tell them
 a. Where they are going,
 b. when they get there,
 c. and how to monitor their progress along the way.
• Human nature is **very fragile and delicate**.

• **Small changes** in how we do business can create **huge changes in the safety and health culture** at the mine.

• The **changes may seem insignificant**, but it can be exactly what is needed.
We should not expect the adding of activators or consequences to improve safety over the long term if powerful consequences exist at a company that encourage at-risk decisions. In these cases it is necessary to change the existing system first.

The human factors that are motivated are the human factors that are performed!
History & Results

Human Factors
Safety and Health
Human Factor safety methods have been used in the US since 1990. They have been proven to cause workers to:

- **Decide** to work safe and healthy
- **Individually make the change** from working unsafe and unhealthy to working safe and healthy
- To **reduce accidents** by up to 50% in the first year
Companies that have human factors-based health and safety programs

3M
Trane
Monsanto
Allied Signal
Hewlett-Packard
Lucent Technologies
North Star Steel • UOP
ARCO Chemical • Infinium
Nalco Chemical • Sentry • Bayer
ExxonMobil Chemical • Bechtel • BHP
Westinghouse • Rohm & Haas • PacifiCorp
Pennsylvania Power and Light • Sentry
Pool Well Services • Wisconsin Electric
Cargill Grain • Wellman • Koch Refining • Hercules
Terumo Cardiovascular Systems • Union Pacific Railroad
Pfizer Pharmaceuticals • Chevron Products • Estee Lauder
Eli Lilly • Ultramar Diamond Shamrock • Leprino Foods
L.L. Bean • Weyerhaeuser • Toyota Motor Manufacturing
ARCO Pipeline • Paxon Polymer • Imperial Oil • Rhone-Poulenc • Searle
Corning Cable Systems • BF Goodrich • Advanced Elastomer Systems
National Park Service • Exxon Coal and Minerals • Cargill Steel
Solutia • East Jordan Iron Works • NORPAC • Southern Fineblanking
Tenneco Packaging • Pike Electric • Square D • Rayonier • Warner Lambert
Lockheed • Honeywell • General Dynamics • Sonopress • Great Northern Paper
Borden Chemical • JEA • Freudenberg • Bristol-Myers Squibb • Johnson & Johnson
Safety Performance Solutions (SPS) advertises these results (www.safetyperformance.com)
2001 – Introduction of Newmont Safety System. Safety defined as an individual and organisational value.

2002 – Focus on risk assessment and risk management.

2003 – Focus on Leadership and behaviour.

2004 – Focus on Quality of existing safety processes.

March 2004 National Metalliferous Benchmark

TRIFR Performance Range 2004

Safety Performance
FIVE YEARS AGO
• Reactive
• Ad hoc approach to safety management
• Reliance on mine safety regulations
• Focus on lost time injuries
• No formal risk management
• Minimal management leadership

SAFETY SEEN AS A COMPLIANCE ISSUE

TODAY
• Proactive
• Systems approach to safety management
• Industry and company standards exceed regulations
• Focus on total recordable injuries, near miss incidents and lead metrics
• Application of qualitative and quantitative risk assessments and systematic focus on risk management
• Safety as a personal and company value

BUSINESS EXCELLENCE THROUGH SAFETY
Total Recordable Incident Rate
Recordable injuries per 100 workers per year (200,000 work hours)

Manufacturing
Construction
Agriculture, Forestry, Fishing and Hunting
Education and Health Services
Trade, Transportation and Utilities
Leisure and Hospitality
Mining
Services
Real Estate
Phelps Dodge
Finance and Insurance

human factors-based safety and health program results
Recognized by MSHA for Working 3 Years with No Violations
Human Factors Safety & Health

- DOES NOT point fingers
- DOES join hands
- DOES NOT place blame
- DOES break barriers
Most Safety & Health Programs, Initiatives, Stickers, Flyers, Bulletins, etc. Focus on:

• **WHAT** work practice is desired or undesired & how to do it or prevent it

• **WHY** work practices are desired or undesired

• **WHO** is required to perform certain work practices

• **WHEN** certain work practices are to be performed

• **WHERE** certain work practices are to be performed
Human Factors Safety and Health Focuses on

• **HOW** to get miners to make the right decisions and perform safe work practices

• It *answers* the age old question, “**HOW** do we get miners to lock-out & tag-out, not go under unsupported ground, buckle-up their safety belt, etc.?”

Human Factors Safety and Health Focuses on SOLVING the PERFORMANCE problem.
To do this, Human Factors Safety & Health Zeroes in on

• The ROOT CAUSES of hazards and unacceptable risks that exist in the mine

• Then it says, “Let’s form a team of supervisory and non-supervisory miners to permanently remove and/or mitigate these hazards and unacceptable risks.”

Human factors safety & health does not have to focus on WHO was at fault to be effective.
Action Plan

- Train managers and miners on SLAM Risks the SMART Way!

- Develop the team or teams to develop the human factors safety and health program

- Give the team or teams the authority to fully implement SLAM Risks the SMART Way!

- Establish regular meeting times
Action Plan

• Closely monitor all steps, techniques, and strategies

• Handle smaller safety & health issues first to allow time for the new way of thinking to take root. Then tackle larger issues.

• Be patient and give the process time to work. Don’t abandon the principles if an unfortunate accident occurs. Safety & health victories will come from leadership, ingenuity, diligence, and hard work. *Newmont saw a decrease in accidents of approximately 50% in 12 months or less!*
When Miners & Mine Management are Risk SLAMMERS together they Make the RIGHT Decision and...