contributingtoabetterworld

# Carmeuse Biodiesel Experience

MSHA/NIOSH Diesel Technology Workshop - January 23, 2019



# AGENDA

- 1. Carmeuse Usage
- 2. The Good...
- The Bad...
- 4. The Ugly...

5.

Close Out



## Carmeuse Background

Carmeuse Lime and Stone, Inc. (Carmeuse North America) operates five underground limestone mines

- ▶ Black River Operation Butler, KY
- ▶ Cisco Operation Cisco, GA
- ▶ Ellijay Operation Ellijay, GA
- ▶ Luttrell Operation Luttrell, TN
- ▶ Maysville Operation Maysville, KY

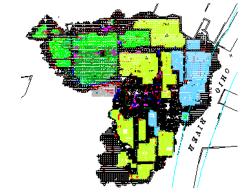


Carmeuse--Black River and Carmeuse--Maysville are the largest of the UG operations, with all mining operations carried out completely UG

▶ The other operations utilize truck haulage to surface

All of the mines are solely dependent on diesel mobile equipment to meet the stone production needs of their plants




# Maysville and Black River Background

Both mines use a staggered room and pillar mining configuration, with headings and benches mined

- ▶ Two to three mining fronts/panels are simultaneously advanced
- ▶ Multiple pieces of mining equipment are simultaneously used in the advancing panels, and split between heading or benching operations

### Diesel equipment utilized:

- ▶ Cat 988 wheel loaders
- Cat 772 haul trucks
- Fletcher diesel face drills
- Cat track-mounted bench drills
- Oldenburg powder rigs
- Cat excavator-type scalers
- Fletcher roof bolters
- ▶ Various diesel powered support equipment
  - ▶ Water and service trucks, manlifts, personnel carriers







# KY (MY and BR) Background

During initial DPM rulemaking, the mines were found to need to make DPM changes like numerous other mines at the time

Carmeuse formed a DPM Compliance team prior to the initial rules enactment date, and compliance options were evaluated:

- Additional ventilation (shafts and fans)
- DPM exhaust filters
- Alternative fuels
- ▶ Engine upgrades
- ▶ Enclosed cabs



# Initial Compliance Background

### Low-sulfur diesel (mandatory)

Relatively easy change over (purchasing and communication)

### Additional ventilation (shafts and fans)

- Large capital costs for shafts and fans
- Significant electrical operating costs for additional fan horsepower

#### DPM exhaust filters

- ▶ Large capital cost if used on all pieces of equipment
- Operating and maintenance issues and costs associated with using and regenerating

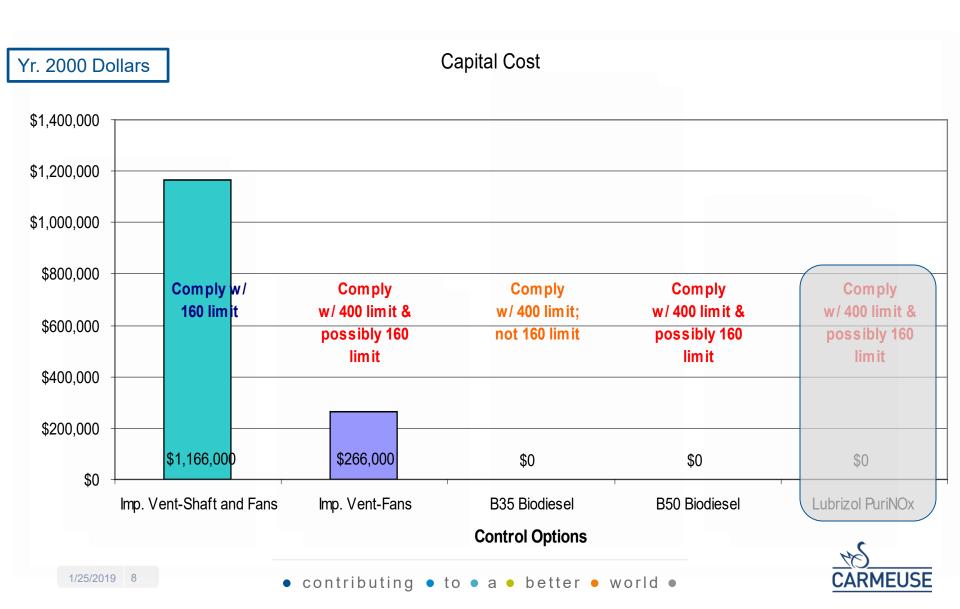
### Engine upgrades

- Cost prohibitive based on cost and equipment ages at the time
- Would be done with new machine purchases

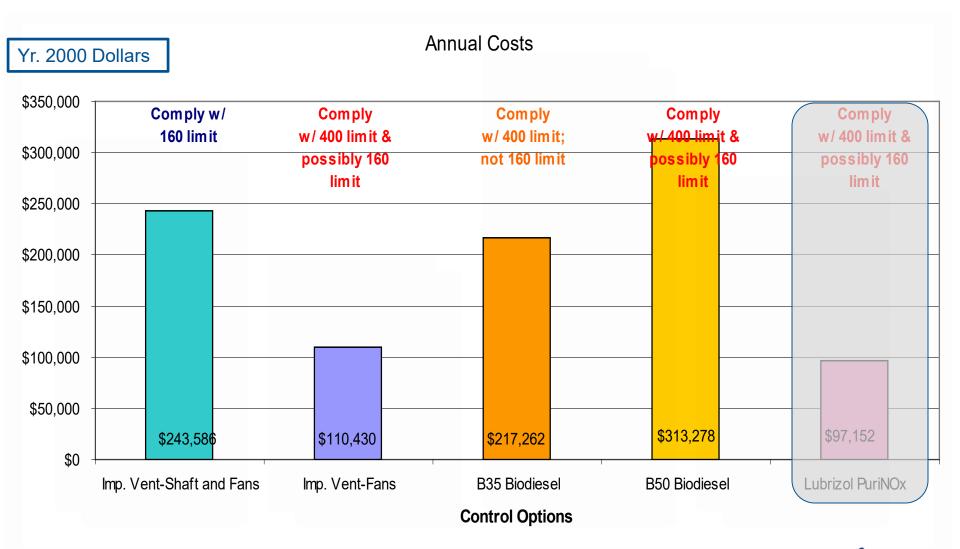
#### **Enclosed cabs**

Similar implementation reasoning as engine upgrades




# Initial Compliance Background

#### Alternative fuels


- Relatively easy implementation (purchasing/scheduling/communication)
- Very minimal capital costs (if any)
- Possible performance issues to overcome
- Increase in operating/fuel cost
- Decreases emissions at the source engine



# **Initial Capital Estimates**



# **Initial Operating Cost Estimates**





### **Fuel Selection**

Alternative fuels selected as primary DPM control methodology based on cost and implementation

Biodiesel selected fuel choices available

- Recycled yellow-grease derived
- Virgin soybean oil derived
- Animal fats based
- And other sources

#### Yellow-grease based biodiesel initially selected

- Locally available
- Limited reported power loss issues
- Some comfort with fuel supplier

#### PuriNOx side note

- Water-Diesel fuel emulsion blend
- Deionized water, Lubrizol chemicals, and diesel fuel
  - ▶ Water molecules are encapsulated in diesel fuel
  - ▶ 10% water winter blend
  - ≥ 20% water summer blend
- Manufacturing phased out at end of 2006





### **Fuel Utilization**

As required, switched to Low-Sulfur Diesel fuel (<0.05% sulfur)

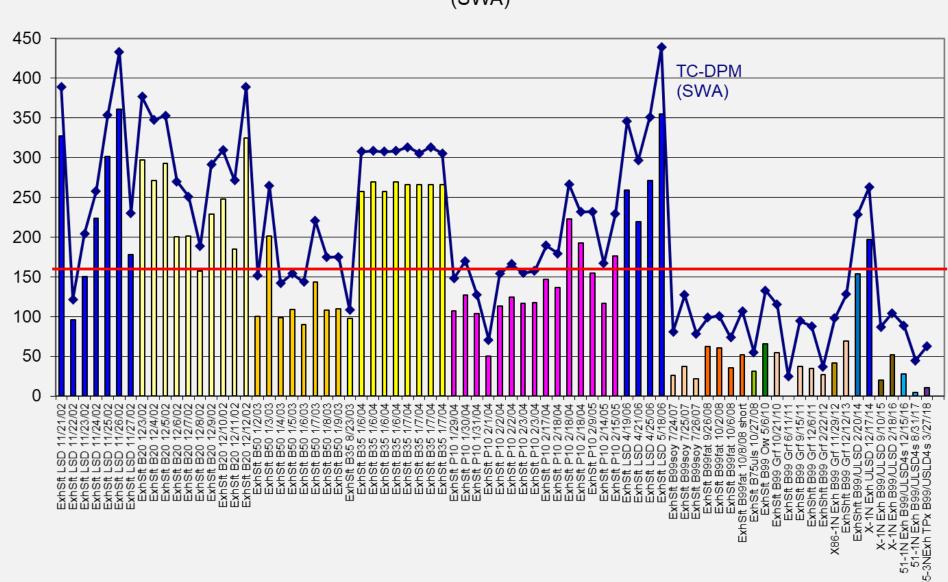
#### Tested number of alternative fuel blends

▶ B20 Bio, B50 Bio, B50 Soy, PuriNOx

Used B35 Biodiesel for 7 mos. – middle to end of '03

#### Tested and used PuriNOx

- ▶ 10% and 20% emulsion blends
- ▶ Majority of equipment operating on it from Jan '04 to late '05
- ▶ Select pieces still on it in mid-'06, but product phased out Dec'06


#### Switched back to biodiesel

- ▶ Selected B99 to meet PuriNOx performance levels
- ▶ Tried a few suppliers and feed stocks
- ▶ Migrated to distillation only processing of soy or yellow grease feed stocks



### **Fuels Performance**

Exhaust Shaft EC-DPM Sampling (SWA)



### Carmeuse Biodiesel Experience

#### MSHA/NIOSH Diesel Technology Workshop

#### The Good

- ▶ Biodiesel brought the Carmeuse UG limestone mines into DPM compliance in the early days of the DPM regulations
  - Alternatives and recommendations had been considered, but biodiesel was selected as the best lead option
- ▶ Biodiesel was instrumental in keeping the KY Mines in compliance during the DPM limit changes
  - Other DPM controls were utilized as well, but Bio remained the lead (eliminate the generation of emissions)
- ▶ Biodiesel was a part of keeping the mines in compliance
  - ▶ Tier 4 engine technology usage increased, with Biodiesel remaining utilized in the non-Tier 4 units
  - ▶ Without additional DPM controls development and implementation, unable to remain consistently within compliance limits without Biodiesel
- Very limited issues with power and performance
- Significant emissions reductions
- Another site utilized biodiesel to quickly achieve compliance



### Carmeuse Biodiesel Experience

#### MSHA/NIOSH Diesel Technology Workshop

#### The Bad

- Biodiesel has its disadvantages and limitations
  - ▶ Nothing is free; all of the DPM controls have costs associated with them

#### Biodiesel

- Increased fuel costs
  - Price
  - Consumption
  - Storage/handling
- Increased maintenance costs
  - Filters
  - Injectors
  - Hoses
- Increased production costs
  - Unplanned downtime (lost production)

### Non-Bio DPM Controls (Tier 4)

- Increased new equipment cost (new engine technology)
- Increased fuel related costs (DEF Fluid)
- Increased maintenance costs
  - Regen system issues
  - DEF systems
  - DPM filters
- Increased production costs
  - DEF fluid procuring/handling
  - Regen's
  - Unplanned downtime



### Carmeuse Biodiesel Experience

#### MSHA/NIOSH Diesel Technology Workshop

### The Ugly

- Downed equipment
  - Plugged fuel filters
  - ▶ Injector replacements
  - Deteriorated hoses and o-rings
  - Paint removal
- Varying quality fuel supplies/suppliers
  - Distilled biodiesel production proven to be best
    - Works for Yellow Grease or Soy based bio's
  - Filtration based bio production still leads to filter plugging
    - On-site filtration system additions unsuccessful
    - ▶ Blend levels above B20 more susceptible
    - Yellow Grease more susceptible than Soy
- ▶ Increased fuel cost, and lower BTU performance (ton/gal)
- ▶ Limited fuel supplies, and commodity price fluctuations
- ▶ Gelled surface fuel delivery lines
- Gelling in equip near winter air intake areas



### **Biodiesel Close Out**

#### **Carmeuse Experiences**

Within Carmeuse, Maysville is the only UG site still utilizing Biodiesel for DPM compliance

With Tier 4 engines (new engine technology) coming in the new equipment replacements, phasing out Bio was one of our recent KY plans

- ▶ Although sticking with less problematic, Tier 3 technology was considered at times as well ☺
- Black River has reached that point
  - ▶ Fuel additive (TPx HD) is in use at BR to enhance fuel burning and emissions
- ▶ Maysville is 23% B99 and 77% ULS Diesel
  - ▶ BR had been 15% B99 and 85% ULS Diesel

No Biodiesel blends have been utilized in the Tier 4 engines

- ▶ B20 is the known manufacturer limit; B5 can be common level
- ▶ Internally decided no Bio would be used in Tier 4's due to the unknowns

